The future of TMVA (Draft version 16/09/2015)

Introduction:

-  TMVA is the ROOT-integrated package for Machine Learning (ML)

- Commonly used in many published HEP analyses

- In production software of the two major LHC experiments (ATLAS/CMS)

- Provides the first point of contact for people in HEP trying to use ML

- Has basic neural networks, boosted decision trees, etc

- Provides a common interface and associated support - very useful to HEP

- Written about 10 years ago, and ML has evolved significantly in that time
- Originally written to introduce ML techniques to the HEP community
- It has now fulfilled that purpose - time to move to the next stage

TMVA use cases:
- Standard analysis users (exotics, SUSY, etc)
- Happy with standard BDT, etc
- Would benefit from integration of modern algorithms and full TMVA support

Precision analysis or performance users (for example: b-tagging)
- Want the best performance possible
- Willing to invest significant time into cutting edge algorithms
- Already willing to work with ML algorithms which are not yet in TMVA
- Would benefit from having a generic TMVA interface to make the process more
straightforward that includes a consistent toolkit for evaluation/monitoring
- Advanced users and other interested parties
- Are willing to probe the limits of what is possible in TMVA
- Are potential future TMVA developers or at least contributors
- Have the potential to put the LHC at the forefront of ML in the areas relevant to
HEP (instead of just playing catch-up, they may try new things)
- ML experts who are working in HEP or interested in HEP problems (challenges, etc)
- Are used to the flexibility of using languages/libraries as necessary
- Work on pushing the boundaries of ML, want to use this in HEP
- Are likely to write code outside of TMVA and want to use it with an interface

Current status of ML:

- Modern BDTs (such as XGBoost) considerably outperform TMVA BDTs both in speed
and accuracy, as seen in the HiggsML challenge.

- Other recent ML developments promise significant gains when applied to the right set of
problems (for example: deep learning). They are also developed and validated by a
larger ML community

- Modern ML packages are optimized for computing performance, often making use of
parallelization and/or GPUs, with flexible data access where only the relevant part of the
dataset is held in memory (important for scalability)



Core requirements:
- The core TMVA package should provide a set of competitive and simple algorithms for
standard HEP analysis usage

- XGBoost is a promising C++ package for integration as the core BDT algorithm
- Other core algorithms should also be updated

-  TMVA interfaces for R and python (with support libraries) for high-performance use
- Allows usage of modern ML packages for performance users

- Provide full and straightforward separation of training, testing and application
- Packages which are not simple to integrate with TMVA can then be trained

externally and the results can be applied through TMVA

Modernising TMVA:
- Flexibility
- The code should be made more modular, such that adding interfaces is
straightforward
- Significant progress has already been made by the RTMVA group
- The core should be more flexible, allowing for decoupling for
datasets/methods/variables in contrast to the current approach
- The new re-design by the RTMVA group addresses this issue

- Computational Performance
- The core code should be redesigned for improved computational performance
- The C++ standard and programming techniques have been substantially
updated in the past decade
- Change matrix algebra to something like eigen which links to kernel
level packages (ATLAS, BLAS)
- Dataset I/0 should be revisited
- Dataset sizes are increasing and it is not always feasible to hold
everything in memory. Many methods exist for optimized handling of
I/O where only relevant parts of the dataset are held in memory

- Latest ML improvements:
- Natively implementing latest improvements in ML in TMVA is a long and
complicated process (akin to re-inventing the wheel) with potential pitfalls/bugs
- Easy interfaces to the most powerful methods is a more desirable road to take
with possible exceptions for significant game-changers. This is the approach
chosen for the new RMVA (including PyMVA) interfaces in TMVA
- The TMVA interface should allow for the use of more advanced ML algorithms
for performance studies, high precision measurements, etc
- R and python interfaces, with additional support libraries (scikit-learn,
pandas etc) will cover the majority of the ML community, and thus are
good starting points. The RMVA group has already done a great job
here and is investigating further python/library support
- A fully flexible interface for arbitrary language wrappers would be very
useful, and should be easier after the R and python interfaces



Desired Features:

Cross-validation

- Standard in ML

- New redesign by the RTMVA team allows easy implementation due to

feature/method/dataset decoupling

Additional information for Analyzer:

- Variable importance, accurate feature ranking

- FAST algorithm for feature importance currently being
integrated by the RTMVA team with the new redesign.

Parallelization

- Many places where it applies, the RTMVA team is currently working on

a general prototype

- Thread safety for multi-threading (important for production)
GPU support for the most computationally intensive algorithms
Alternative input file types to more easily work with ML community (example:
HDF5)
A high-statistics sample for testing purposes: the current sample within TMVA
is not adequate for studying modern algorithm performance
Ability to output a standalone c++ code/executable without additional
dependencies
Expert users should be able to pause and resume training after tweaking
hyperparameters as is done in the ML community
Make it easier for the ML community to contribute directly to TMVA such as
through a GitHub repository which is open to pull requests

How a TMVA redesign affects the three use cases:

All users: improved computational performance and dataset flexibility

Simple users: provides access to modern ML algorithms for additional power
Performance users: provides access to cutting-edge ML algorithms through interfaces
Potential developers: improved modularity makes it easier to contribute, interfaces
make it easier to try new things, lots of areas for interested parties to contribute

ML experts working with HEP: facilitates interactions between HEP and ML

Easier to re-import ML results into HEP, increasing the benefit of ML
challenges and reducing the overhead of exploiting new ML techniques

Easier for ML community to work with the software they are familiar with and
which may be better optimized for a given problem (in a way we did not
consider); if we place restrictions on how they approach problems, this may
become a limitation

References for work done by the RTMVA group (Lorenzo+Sergei+students):
TMVA restructuring for modularity: http://oproject.org/TMVA
RMYVA interface: http://oproject.org/RMVA

PyMVA (scikit-learn) interface: http://oproject.org/PyMVA



http://oproject.org/tiki-index.php?page=TMVA
http://oproject.org/tiki-index.php?page=RMVA
http://oproject.org/PyMVA

